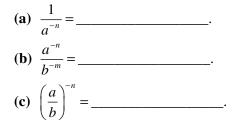
Chapter 12 Polynomials and Exponents 12.5 Integer Exponents and the Quotient Rule

Negative Integers as Exponents ~ The Quotient Rule ~ Other Rules for Exponents ~ Scientific Notation

STUDY PLAN

Read: Read Section 12.5 on pages 770-778 in your textbook or eText.					
Practice: Do your assigned exercises in your	Book MyMathLab	Worksheets			


Review: Keep your corrected assignments in an organized notebook and use them to review for the test.

Key Terms

Exercise 1-4: Use the vocabulary terms listed below to complete each statement. Note that some terms or expressions may not be used.

- 1. Let *a* be a nonzero real number and *n* be a positive integer. Then $a^{-n} =$ ______. That is, a^{-n} is the ______ of a^n .
- 2. For any nonzero number *a* and integers *m* and *n*, $\frac{a^m}{a^n} =$ _____.
- 3. The following three rules hold for any nonzero numbers *a* and *b* and positive integers *m* and *n*.

4. A real number *a* is in ______ when *a* is written in the form $b \times 10^n$, where $1 \le |b| < 10$ and *n* is an integer.

Negative Integers as Exponents

Exercises 1-10: Refer to Examples 1-3 on pages 771-772 in your text and the Section 12.5 lecture video.

Simplify each expression. **1.** 4⁻² 1._____ **2.** 5⁻¹ 2._____ 3. x^{-3} 3. 4. $(a+b)^{-4}$ 4._____ Evaluate each expression. 5. $3^2 \cdot 3^{-5}$ 5._____ 6. $5^{-3} \cdot 5^{-1}$ 6._____ Simplify the expression. Write the answer using positive exponents. 7. $x^3 \cdot x^{-5}$ 7._____ 8. $(t^3)^{-2}$ 8._____ 9. $(ab)^{-4}$ 9._____ **10.** $(xy)^{-5}(xy^{-3})^2$ 10._____

The Quotient Rule

Exercises 11-13: Refer to Example 4 on page 773 in your text and the Section 12.5 lecture video. Simplify each expression. Write the answer using positive exponents.

11.	$\frac{3^4}{3^6}$	11
12.	$\frac{15a^2}{5a^6}$	12
13.	$\frac{x^6y^2}{x^5y^7}$	13

Other Rules for Exponents

Exercises 14-17: Refer to Example 5 on page 774 in your text and the Section 12.5 lecture video. Simplify each expression. Write the answer using positive exponents.

14.	$\frac{1}{3^{-4}}$	14
15.	$\frac{4^{-2}}{3^{-3}}$	15
16.	$\frac{4x^2y^{-3}}{12x^{-3}y^4}$	16
17.	$\left(\frac{b^3}{5}\right)^{-2}$	17

Copyright © 2013 Pearson Education, Inc.

Scientific Notation

Exercises 18-23: Refer to Examples 6-8 on pages 776-777 in your text and the Section 12.5 lecture video.

Write each number in standard form.				
18.	4.17×10 ⁵	18		
19.	2.3×10 ⁻⁴	19		
20.	5.82×10 ⁻²	20		
Write each number in scientific notation.				
21.	32,000,000	21		
22.	0.00002	22		
23.	There are approximately 5.859×10^{12} miles in one light year. The distance from Earth to the moon and back is 4.8×10^5 miles. How many round trips to the moon does one light-year represent? Write your answer in scientific notation.	23		

Copyright © 2013 Pearson Education, Inc.