Chapter 13 Factoring Polynomials and Solving Equations 13.5 Summary of Factoring

Guidelines for Factoring Polynomials - Factoring Polynomials

Foll 15 risht work credit puts posted

Key Terms

Exercises: Use the vocabulary terms listed below to complete each statement. Note that some terms or expressions may not be used. Some terms may be used more than once.

$$a^{2}+b^{2}$$

$$(a+b)^{2}$$

$$a^{2}-b^{2}$$

$$(a-b)^{2}$$

$$a^{3}+b^{3}$$

$$a^{3}-b^{3}$$

FOIL grouping perfect square sum of two cubes completely factored difference of two squares perfect square trinomial greatest common factor (GCF) difference of two cubes

Guidelines for Factoring Polynomials

STEP 1: Factor out the GCF ___, if possible.

STEP 2: A. If the polynomial has four terms, try factoring by Group in .

- B. If the polynomial is a binomial, try one of the following.

 1. $a^{\frac{N}{2}-b^{\frac{N}{2}}} = (a-b)(a+b)$ This is referred to as a(n)
 - 2. $a^3 b^3 = (a-b)(a^2 + ab + b^2)$ This is referred to as a(n)
 - 3. $a^{\frac{3}{4}}b^{\frac{3}{3}} = (a+b)(a^2-ab+b^2)$ This is referred to as a(n)
- C. If the polynomial is a trinomial, check for a(n) per lect 5% were
 - 1. $a^2 + 2ab + b^2 = (a + b)^2$ This is referred to as a(n) for feet a_n more trional a_n and a_n This is referred to as a(n) for feet a_n more trional a_n This is referred to as a(n) for feet a_n more trional a_n

Otherwise, try to factor the trinomial by a form or apply

FOIL in reverse.

Factoring Polynomials

Exercises 1-8: Refer to Examples 1-8 on pages 830-832 in your text and the Section 13.5 lecture

Factor.

1.
$$5x^3 - 20x^2 + 25x$$
 $5x (x^2 - 4x + 5)$

2.
$$4t^4 + 144t^2$$

3.
$$-45a^3 - 30a^2 - 5a - 5a (9a^2 + 6a + 1)$$

4.
$$5x^3 - 320$$
 $5(x^3 - 64)$

4.
$$5x^3-320$$
 $5(x^3-64)$ $5(x-4)(x^2+7x+76)$

5.
$$24x^4 + 10x^3 - 4x^2$$
 $3x^2(12x^2 + 5x - 2)$

AC B

 $3y = 58-3$
 $4x(3x+2) - 1(3x+2)$
 $3x^2(4x-1)(3x+2)$

6.
$$8x^{3}+4x^{2}-72x-36$$

 $4x^{2}(2x+1)-36(2x+1)$ $4(x-3)(2x+1)$
 $(4x^{2}-36)(2x+1)$

4(x2 9)(2x+1)

7.
$$16a^3b - 36ab^3$$
 $4ab(4a^2 - 9b^2)$ $4ab(2a - 3b)(2a + 3b)$

$$8. \quad 12x^3 + 9x^2 + 20x + 15$$

Chapter 13 Factoring Polynomials and Solving Equations 13.6 Solving Equations by Factoring I (Quadratics)

The Zero-Product Property ~ Solving Quadratic Equations ~ Applications

Key Terms

Exercises 1-5: Use the vocabulary terms listed below to complete each statement. Note that some terms or expressions may not be used.

zeros standard form zero-product quadratic equation quadratic polynomial

- A) The Pero-product property states that if the product of two numbers (or expressions) is 0, then at least one of the numbers (or expressions) must equal 0.
- B) Any gotto p_0/y in the variable x can be written as $ax^2 + bx + c$ with $a \ne 0$.
- The $\frac{2eroS}{}$ of a polynomial in x are the values that, when substituted for x, result in 0.
- D) Any gundless in the variable x can be written as $ax^2 + bx + c = 0$ with $a \ne 0$.
- E) The form $ax^2 + bx + c = 0$ is called the <u>Standard</u> of a quadratic equation.

The Zero-Product Property

Exercises 1-4: Refer to Example 1 on page 835 in your text and the Section 13.6 lecture video.

Solve each equation.

9.
$$x(x+2)=0$$

10.
$$\frac{3a^2}{3} = 0$$

11.
$$(b+1)(b-4)=0$$

12.
$$x(x-3)(x+5)=0$$

Solving Quadratic Equations

Exercises 5-9: Refer to Examples 2-3 on pages 836-837 in your text and the Section 13.6 lecture video.

Solve each quadratic equation. Check your answers.

13.
$$x^2 + 4x = 0$$

13.
$$x^2 + 4x = 0$$
 $(x + y) = 0$

14.
$$t^2 = 9$$

15.
$$a^2 - 5a + 6 = 0$$

A=#3

a=2,3

16.
$$10x^{2}+7x=12$$
 $10x^{2}+7x=12$
 $10x^{2}+2x-12=0$
 $10x^{2}+2x-12=0$
 $10x^{2}+10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-6x-12=0$
 $10x^{2}+10x-10x-12=0$
 $10x^{2}+10x-12=0$
 $10x^{$

Exercises 10-12: Refer to Examples 4-6 on pages 838-839 in your text and the Section 13.6 lecture

The height h in feet of a baseball after t seconds is given by $h(t) = -16t^2 + 88t + 4$. At what values of t is the height of the baseball 100 feet?

100 = -16 x 2 + 88 + 44 001 = -16 x 2 + 88 + 44

A= 3/2, 4 sec -8(2x-3/x-4) = 0 1=3 1=4

19. The braking distance D in feet required to stop a car traveling at x miles per hour on wet leading.

x miles per hour on wet, level pavement can be approximated by $D = \frac{1}{9}x^2.$ $D = \frac{1}{9}(40)^2 \implies D = \frac{1}{9}(600 \implies D = \frac{1}{9})$

(a) Calculate the braking distance for a car traveling at 40 miles

(a) 177. 7 ff

(b) If the braking distance is 60 feet, estimate the speed of the car.

(b) 23,24mal

20. A digital photograph is 20 pixels longer than it is wide and has a total area of 3500 pixels. Find the dimensions of this photograph. 50 by 70 pinos/s

$$(x + 30)(x - 50) = 0$$

Copyright © 2013 Pearson Education, Inc.

073x 08-3X

