Chapter 13 Factoring Polynomials and Solving Equations 13.6 Solving Equations by Factoring I (Quadratics)

The Zero-Product Property ~ Solving Quadratic Equations ~ Applications

STUDY PLAN				
Read: Read Section 13.6 on pages 834-840 in your textbook or eText.				
Practice: Do your assigned exercises in your Book MyMathLab Worksheets				
Review: Keep your corrected assignments in an organized notebook and use them to review for the test.				

Key Terms

Exercises 1-5: Use the vocabulary terms listed below to complete each statement. Note that some terms or expressions may not be used.

zeros standard form zero-product quadratic equation quadratic polynomial

- 1. The ______ property states that if the product of two numbers (or expressions) is 0, then at least one of the numbers (or expressions) must equal 0.
- 2. Any ______ in the variable x can be written as $ax^2 + bx + c$ with $a \neq 0$.
- **3.** The ______ of a polynomial in *x* are the values that, when substituted for *x*, result in 0.
- 4. Any ______ in the variable x can be written as $ax^2 + bx + c = 0$ with $a \neq 0$.
- 5. The form $ax^2 + bx + c = 0$ is called the ______ of a quadratic equation.

The Zero-Product Property

Exercises 1-4: Refer to Example 1 on page 835 in your text and the Section 13.6 lecture video.

Solve each equation.

1. $x(x+2) = 0$	1
2. $3a^2 = 0$	2
3. $5(b+1)(b-4) = 0$	3
4. $x(x-3)(x+5) = 0$	4

Solving Quadratic Equations

Exercises 5-9: Refer to Examples 2-3 on pages 836-837 in your text and the Section 13.6 lecture video.

Solve each quadratic equation. Check your answers.

6. $t^2 = 9$

7. $a^2 - 5a + 6 = 0$

7._____

6._____

8.	Solve $20x^2 + 14x = 24$	8
9.	Solve $2x^2 - 9x = 5$.	9

Applications

Exercises 10-12: Refer to Examples 4-6 on pages 838-839 in your text and the Section 13.6 lecture video.

10.	The height h in feet of a baseball after t seconds is given by	10
	$h(t) = -16t^2 + 88t + 4$. At what values of t is the height of the	
	baseball 100 feet?	

- 11. The braking distance D in feet required to stop a car traveling at x miles per hour on wet, level pavement can be approximated by
 - $D = \frac{1}{9}x^2.$
 - (a) Calculate the braking distance for a car traveling at 40 miles per hour. (Round to 2 decimal places as needed.)
 - (b) If the braking distance is 60 feet, estimate the speed of the car. (Round to 2 decimal places as needed.)

(b)_____

Name:	Course/Section:	Instructor:
Chapter 13 Facto 13.7 Solving Equ	oring Polynomials and Solving Equ ations by Factoring II (Higher Deg	ations gree)
Polynomials with C	ommon Factors ~ Special Types of Poly	nomials
12. $x^4 + 12x^3$		12
3. $2x^3 - 12x^2 + 10x$		13
olve each equation. 14. $6v^3 - v^2 - v = 0$		14
15. $4x^3 - 4x^2 = 12$	0 <i>x</i>	15

Special Types of Polynomials

Exercises 6-10: Refer to Examples 4-5 on pages 845-846 in your text and the Section 13.7 lecture video.

Factor each polynomial completely.

16. $x^4 - 81$

16._____

18. $a^4 + 6a^2 + 5$

19. $2x^3 - 16$

20. $a^4 - 16b^4$

18._____

19._____

20._____

Vocabulary

- 1) Zero-product
- 2) quadratic polynomial
- 3) zeros
- 4) quadratic equation
- 5) standard form
- 1) x = 0, -2
- 2) a = 0
- 3) b = -1, 4
- 4) x = 0, 3, -5
- 5) x = 0, -4
- 6) t = -3, +3
- 7) a = 2, 3

- 8) x = 4/5, -3/2
- 9) x = -1/2, 5
- 10) 4 sec and 1.5 sec
- 11) a. 177.78ft b. 23.24 mph
- 12) $x^{3}(x+12)$
- 13) 2x(x-5)(x-1)
- 14) y = 0, -1/3, 1/2
- 15) x = 0, 6, -5
- 16) $(x+3)(x-3)(x^2+9)$
- 17) NA
- 18) $(a^2+5)(a^2+1)$
- 19) $2(x-2)(x^2+2x+4)$
- 20) $(a-2b)(a+2b)(a^2+4b^2)$