Chapter 13 Factoring Polynomials and Solving Equations

13.6 Solving Equations by Factoring I (Quadratics)

The Zero-Product Property ~ Solving Quadratic Equations ~ Applications

STUDY PLAN

Read: Read Section 13.6 on pages 834-840 in your textbook or eText.
Practice: Do your assigned exercises in your $\quad \square$ Book $\quad \square$ MyMathLab \square Worksheets
Review: Keep your corrected assignments in an organized notebook and use them to review for the test.

Key Terms
 Exercises 1-5: Use the vocabulary terms listed below to complete each statement. Note that some terms or expressions may not be used.

```
zeros
standard form
zero-product
quadratic equation
quadratic polynomial
```

1. The \qquad property states that if the product of two numbers (or expressions) is 0 , then at least one of the numbers (or expressions) must equal 0 .
2. Any \qquad in the variable x can be written as $a x^{2}+b x+c$ with $a \neq 0$.
3. The \qquad of a polynomial in x are the values that, when substituted for x, result in 0 .
4. Any \qquad in the variable x can be written as $a x^{2}+b x+c=0$ with $a \neq 0$.
5. The form $a x^{2}+b x+c=0$ is called the \qquad of a quadratic equation.

The Zero-Product Property

Exercises 1-4: Refer to Example 1 on page 835 in your text and the Section 13.6 lecture video.
Solve each equation.

1. $x(x+2)=0$
2. \qquad
3. $3 a^{2}=0$
4. \qquad
5. $5(b+1)(b-4)=0$
6. \qquad
7. $x(x-3)(x+5)=0$
8. \qquad

Solving Quadratic Equations

Exercises 5-9: Refer to Examples 2-3 on pages 836-837 in your text and the Section 13.6 lecture video.

Solve each quadratic equation. Check your answers.
5. $x^{2}+4 x=0$
5. \qquad
6. $t^{2}=9$
6. \qquad
7. $a^{2}-5 a+6=0$
7. \qquad
8. Solve $20 x^{2}+14 x=24$
8. \qquad
9. Solve $2 x^{2}-9 x=5$.
9. \qquad

Applications

Exercises 10-12: Refer to Examples 4-6 on pages 838-839 in your text and the Section 13.6 lecture

 video.10. The height h in feet of a baseball after t seconds is given by $h(t)=-16 t^{2}+88 t+4$. At what values of t is the height of the baseball 100 feet?
11. The braking distance D in feet required to stop a car traveling at x miles per hour on wet, level pavement can be approximated by $D=\frac{1}{9} x^{2}$.
(a) Calculate the braking distance for a car traveling at 40 miles per hour. (Round to 2 decimal places as needed.)
11.(a) \qquad
(b) \qquad
12. \qquad
(b) If the braking distance is 60 feet, estimate the speed of the car. (Round to 2 decimal places as needed.)

Chapter 13 Factoring Polynomials and Solving Equations
13.7 Solving Equations by Factoring II (Higher Degree)

Polynomials with Common Factors ~ Special Types of Polynomials
12. $x^{4}+12 x^{3}$
13. $2 x^{3}-12 x^{2}+10 x$

Solve each equation.
14. $6 y^{3}-y^{2}-y=0$
14. \qquad
15. $4 x^{3}-4 x^{2}=120 x$
15. \qquad

Special Types of Polynomials

Exercises 6-10: Refer to Examples 4-5 on pages 845-846 in your text and the Section 13.7 lecture video.

Factor each polynomial completely.

$$
\text { 16. } x^{4}-81
$$

16.
17. $a^{4}+6 a^{2}+5$
18.
19. $2 \mathrm{x}^{3}-16$
20. \qquad
21. $a^{4}-16 b^{4}$
22.

Vocabulary

8) $x=4 / 5,-3 / 2$
9) Zero-product
10) quadratic polynomial
11) zeros
12) quadratic equation
13) standard form
14) $x=0,-2$
15) $a=0$
16) $b=-1,4$
17) $x=0,3,-5$
18) $x=0,-4$
19) $t=-3,+3$
20) $a=2,3$
21) $x=-1 / 2,5$
22) 4 sec and 1.5 sec
23) a. 177.78 ft b. 23.24 mph
24) $x^{3}(x+12)$
25) $2 x(x-5)(x-1)$
26) $y=0,-1 / 3,1 / 2$
27) $x=0,6,-5$
28) $(x+3)(x-3)\left(x^{2}+9\right)$
29) NA
30) $\left(\mathrm{a}^{2}+5\right)\left(\mathrm{a}^{2}+1\right)$
31) $2(x-2)\left(x^{2}+2 x+4\right)$
32) $(\mathrm{a}-2 \mathrm{~b})(\mathrm{a}+2 \mathrm{~b})\left(\mathrm{a}^{2}+4 \mathrm{~b}^{2}\right)$
